Pebbles in Planet Formation **Opening Remark** Misako Tatsuuma (RIKEN iTHEMS)

Local information

- Wi-Fi:
 - SSID: naoj-open
 - Password: Please check the posted notice.
- Talks:
 - Keynote: 45 min. = transition time + talk (≈ 35 min.) + discussion (< 10 min.)
 - Contributed: 15 min. = transition time + talk (\approx 12 min.) + discussion (< 3 min.)
 - Presenters should **share their screens directly via Zoom**.
 - (The shared screen will also be displayed on the big screen in the seminar room.) • On-site attendees should not connect to Zoom.
 - If you have a question, please line up at the microphone.
- Lunch: Please pay in cash at the registration desk.

2 /31

Sponsor & Organizers

- Sponsor: THE EMS RIKEN Interdisciplinary Sciences Program

 - The program facilitates close collaborations among researchers

• Organizers:

Misako Tatsuuma (RIKEN iTHEMS), Akimasa Kataoka (NAOJ), Yuhito Shibaike (NAOJ), Tomomi Omura (Osaka Sangyo Univ.), Ryosuke Tominaga (Institute of Science Tokyo), Kiyoaki Doi (MIPA), Naoya Kitade (NAOJ)

• Participants: 63 in-person, 70 online

• **RIKEN** Interdisciplinary **Theoretical and Mathematical Sciences Program (iTHEMS)** from different disciplines in theoretical, mathematical, and computational sciences.

Code of conduct & Health guidelines

• Take a look at the webpage:

Pebbles in Planet Formation

10-13 Feb 2025 National Astronomical Observatory of Japan (NAOJ) Asia/Tokyo timezone

Overview

Registration

Program & Abstract

Excursion (Feb 11)

Direction & Accommodation

Code of conduct

Health & Safety Guidelines

Contact

ppf2025-contact@ml.rik...

Code of conduct

 Contact points: Misako Tatsuuma (she/her), Akimasa Kataoka (he/him), Tomomi Omura (she/her), Ryosuke Tominaga (he/him)

• Health guidelines

- If you feel unwell, please consider attending online instead of in person. Oral presenters may switch to remote presentations via Zoom.

Slack & Excursion

- Slack
- Excursion (Tomorrow)
 - 1. Mount Takao Course
 - 2. Tokyo City Course (Tokyo Skytree)
 - How to Join
 - Join the Slack channel for your chosen course.
 - All updates and communication will be on Slack.

excursion-mt-takao # # excursion-tokyo-city

Join Slack to upload your slides and engage in discussions with online participants.

Motivation: What do we discuss? Understanding grain growth in the context of planet formation

Grain growth in the context of planet formation

→ However, there are barriers to overcome...

Barriers against grain growth

St_{max} ~ 0.1 for compact dust (e.g., Okuzumi et al. 2012)

- St = $t_{\rm fric}\Omega_{\rm K}$: Stokes number
- *t*_{fric}: friction time for a dust grain
- $\Omega_{\rm K}$: Keplerian angular velocity

+ Charge barrier (e.g., Okuzumi 2009),

Bouncing barrier

Weidling et al. (2012)

→ The keys to overcoming these barriers are dust porosity and instabilities.

Rotational disruption (e.g., Tatsuuma & Kataoka 2021), etc.

Formation process of planetesimals and planets

Pebbles? How do we define them?

Small solar system body explorations & observations

→ Talk by Takahiro Ueda

~ mm-cm? (e.g., Okada et al. 2020)

→ Talks by Carsten Güttler and Ryota Fukai

gas rotation

St $\equiv \Omega_{\rm K} t_{\rm fric}$

- $\phi = 1 \rightarrow$
- $\phi = 0.1$
- $\phi = 0.01$

gas disk (face-on)

dust rotation

w/ gas drag

St ~ 0.1?

Stokes number in the Epstein drag regime

$$\rho_{\rm gas} = \Omega_{\rm K} \frac{\rho_{\rm int} a}{\rho_{\rm gas} v_{\rm th}} = \Omega_{\rm K} \frac{\rho_{\rm int} a \sqrt{2\pi} c_{\rm s}}{\Sigma_{\rm gas} \Omega_{\rm K} \sqrt{8/\pi} c_{\rm s}} = \frac{\pi \rho_{\rm int} a}{2\Sigma_{\rm gas}}$$

- ρ_{int} : internal density of pebbles, *a*: pebble radius, - ρ_{gas} : gas density, Σ_{gas} : gas surface density, - *v*_{th}: thermal velocity, *c*_s: sound velocity

For $\Sigma_{gas} = 54 \text{ g cm}^{-2}$ (MMSN model @ 10 au) and $\rho_{int} = \phi \times 1 \text{ g cm}^{-3}$, volume filling factor and size of pebbles with St = 0.1:

$$a = 3.4 \text{ cm (compact)}$$

→ $a = 34 \text{ cm (moderate porous)}$

1 → $a = 3.4 \text{ m (extremely porous)}$

(porosity = 1 - volume filling factor)

Size and porosity of pebbles observed in disks

Size

- Dust continuum spectral index: ~ mm
- (e.g., Pérez et al. 2012, 2015; Testi et al. 2014; Tazzari et al. 2016; Carrasco-González et al. 2019) • Linear polarization observations of mm wavelengths: ~ 100 μ m (for compact pebbles) (e.g., Kataoka et al. 2016a,b, 2017; Bacciotti et al. 2018; Liu 2019; Miotello et al. 2023; Drążkowska et al. 2023)

Volume filling factor (= 1 – porosity)

- Linear polarization observations of mm wavelengths: $\phi \approx 0.03$ -0.3 (e.g., Kirchschlager et al. 2019; Tazaki et al. 2019; Zhang et al. 2023; Ueda et al. 2024)
- \rightarrow mm-sized and moderately porous ($\phi \approx 0.03-0.3$)? → Talk by Takahiro Ueda

 $\phi = 0.1, a_{\text{max}} = 1.6 \text{ mm}$

Key questions about pebbles

- How, when, and where do pebbles form?
 - Radial drift, fragmentation, bouncing, or other processes?
- Are pebbles sufficient for forming planets?

©NAOJ 4D2U Wada et al. (2018)

Weidling et al. (2012)

Questions about protoplanetary disk observations

- What are the properties of pebbles in protoplanetary disks?
 - Size, porosity, spatial distribution, etc.
- Which physical processes determine these properties?
 - Radial drift, fragmentation, bouncing, or others?
- Is the mass of pebbles sufficient for planetesimal formation?
 - Can the instabilities form planetesimals from those pebbles? → Talk by Min-Kai

	n

Questions about solar system studies

- → Talks by Carsten Güttler • What are the properties of pebbles in the solar system? and Ryota Fukai
 - Size, porosity, formation time, etc.
- Can we regard them as the same as pebbles in protoplanetary disks?
- Are small bodies the same as planetesimals formed via the instabilities?

→ Talk by Min-Kai Lin

Questions about dust growth

- Are laboratory experiments consistent with dust N-body simulations?
- solar system studies?

Weidling et al. (2012)

• Can we test the dust growth theory through protoplanetary disk observations and

Questions about planetesimal formation

- Have all barriers to planetesimal formation been solved?
- What are the necessary conditions for planetesimal formation via the instabilities?
- Is the planetesimal formation process consistent with protoplanetary disk observations and solar system studies?

(e.g., Kataoka et al. 2017)

→ Talk by Min-Kai Lin

From Dust to Planetesimals: A Theoretical Review of Dust Aggregation and Pebble Formation in Planet Formation

Early stages of dust growth: dust aggregation

BCCA

(Ballistic Cluster-Cluster Aggregation)

BPCA

(Ballistic Particle-Cluster Aggregation)

Porosity evolution of dust aggregates

BCCA and further compression (Kataoka et al. 2013a, b)

* Density $[g/cm^3] = 1 g/cm^3$ (ice) × ϕ

- Dust aggregates can become extremely porous ($\phi \sim 10^{-4}$)!
- The BCCA model represents the lower limit of the volume filling factor.
 - Collisional and gas compression, as well as the radial drift barrier, depend on the disk model.

Problems with the extremely porous evolution model

BCCA and further compression (Kataoka et al. 2013a, b)

* Density [g/cm³] = 1 g/cm³ (ice) × ϕ

 The extremely porous evolution model can overcome growth barriers!
 However, it fails to explain the volume filling factor of

pebbles observed in disks $(\phi \approx 0.03-0.3).$

How to explain pebbles observed in disks?

BCCA and further compression (Kataoka et al. 2013a, b)

* Density $[g/cm^3] = 1 g/cm^3$ (ice) × ϕ

- **BPCA-like evolution** ($\phi \approx 0.1$)
- Collisional compression: Although aggregate growth is dominated by similar-sized collisions (Okuzumi et al. 2012), high-mass ratio collisions can effectively compress aggregates $(\phi \approx 0.06 - 0.2)$. (Tanaka et al. 2023)
- Self-gravity compression

Collisional compression of dust aggregates

Sequential head-on collisions with high mass ratios (Tanaka et al. 2023)

Target (BPCA, BCCA)

Outcome

Impactor (BCCA) * Identical for each sequential collision

Although aggregate growth is dominated by 10^{5} 10^{4} similar-sized collisions (Okuzumi et al. 2012) **high-mass ratio collisions** can effectively compress aggregates ($\phi \approx 0.06$ –0.2).

Pebbles in disks as fragments of planetesimals?

Self-gravity compression of BCCAs based on their compressive strength

(Tatsuuma et al. 2023, 2024)

 10^{4}

24/31

10³

How to explain pebbles observed in disks?

BCCA and further compression (Kataoka et al. 2013a, b)

* Density $[g/cm^3] = 1 g/cm^3$ (ice) × ϕ

- **BPCA-like evolution** ($\phi \approx 0.1$)
- Collisional compression (Tanaka et al. 2023)
- Self-gravity compression

(Tatsuuma et al. 2024)

- → How to stop dust growth?
 - Fragmentation
 - Bouncing

How to stop the dust growth: fragmentation

Fragmentation velocity of BPCAs (Wada et al. 2009)

$$v_{\rm frag} \simeq 50 \text{ m s}^{-1} \left(\frac{\gamma}{100 \text{ mJ m}^{-2}}\right)^{5/6} \left(\frac{r_{\rm mon}}{0.1 \ \mu \text{m}^{-2}}\right)^{10}$$

Surface energy Young's modulus Material density Radius of individual grains * H₂O ice (e.g., Israelachvili 1992) (monomer radius)

Fragmentation velocity of pebbles observed in protoplanetary disks (e.g., Ueda et al. 2024) $v_{\rm frag} \lesssim 1 \ {\rm m \ s^{-1}}$

• If $\gamma \to 0.1\gamma$ (surface energy) • If $r_{\text{mon}} \to 10r_{\text{mon}}$ (monomer radius)

→ Less sticky? Larger individual grains?

$$\left(\frac{\rho_{\rm mat}}{1 \text{ g cm}^{-3}}\right)^{-1/2}$$

$v_{\rm frag} \rightarrow 0.15 v_{\rm frag}$ (fragmentation velocity)

How to stop the dust growth: bouncing

Bouncing barrier in simulations (Arakawa et al. 2023; Oshiro et al. submitted)

Larger, less porous dust aggregates tend to bounce at intermediate velocities (≤ 10 m/s).

→ Talk by Haruto Oshiro

Can we test dust growth through solar system studies?

Relation between diameter and bulk density of small bodies in the solar system

Can we test dust growth through solar system studies?

Self-gravity compression of BCCAs based on their compressive strength: (Tatsuuma et al. 2024)

Can we test dust growth through solar system studies?

Tensile strength of dust aggregates (Tatsuuma et al. 2019)

$$\simeq 6 \times 10^5 \text{ Pa} \left(\frac{\gamma}{100 \text{ mJ m}^{-2}}\right) \left(\frac{r_{\text{mon}}}{0.1 \ \mu\text{m}}\right)^{-1} \phi$$

Surface energy Monomer radius

30/31

Summary

- can overcome growth barriers, such as radial drift, fragmentation, bouncing. However, it fails to explain the porosity of pebbles observed in protoplanetary disks.
- BPCA-like evolution, collisional compression, and self-gravity compression can explain the observed pebbles, but further studies are needed.
- Once we can explain the porosity of observed pebbles, it becomes necessary to address how dust growth is halted.
 - Fragmentation can stop dust growth, but this requires assuming that the individual grains are either less sticky, larger, or both.
 - rather than stick.

The extremely porous evolution model, based on BCCA and further compression,

Recent simulations show that larger, less porous dust aggregates tend to bounce